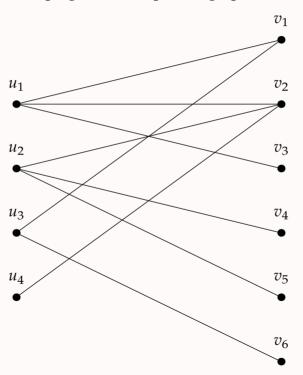


# Calcul d'un couplage maximal dans un graphe biparti Vincent Picard

### Un exemple de graphe biparti

■ On veut calculer un couplage maximal pour le graphe :

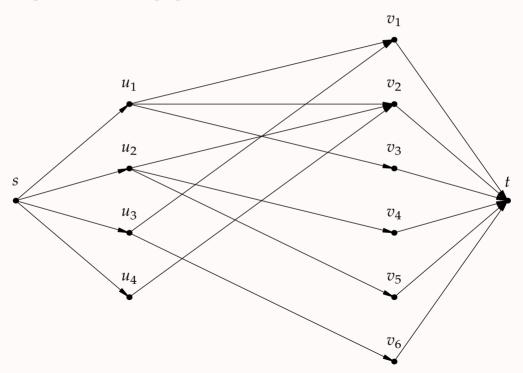


#### **Graphe résiduel**

- Étant donné un graphe biparti  $G = (U \cup V, A)$  et un couplage M, le calcul des **chemins augmentants** se fait facilement à l'aide du graphe résiduel :
  - ▶ C'est un graphe orienté construit à partir des sommets de *G*
  - $\blacktriangleright$  On ajoute un sommet source s et un sommet cible t
  - ▶ Si  $(u, v) \notin M$  alors (u, v) est un **arc** du graphe résiduel.
  - ► Si  $(u, v) \in M$  alors (v, u) est un **arc** du graphe résiduel.
  - ▶ *s* pointe sur tous les sommets de *U* non appariés
  - ightharpoonup t est pointé par tous les sommets de V non appariés
  - un chemin augmentant correspond donc à un chemin de s à t

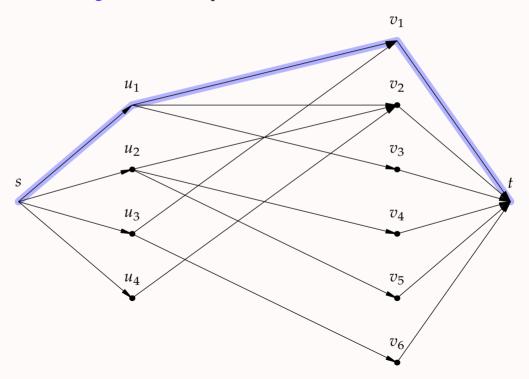
# Graphe résiduel : exemple

■ Au départ  $M = \emptyset$  et le graphe résiduel est :



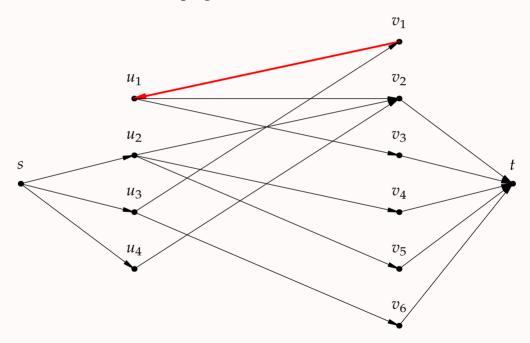
## Graphe résiduel : un chemin augmentant

■ Un chemin augmentant correspond à un chemin de s à t:



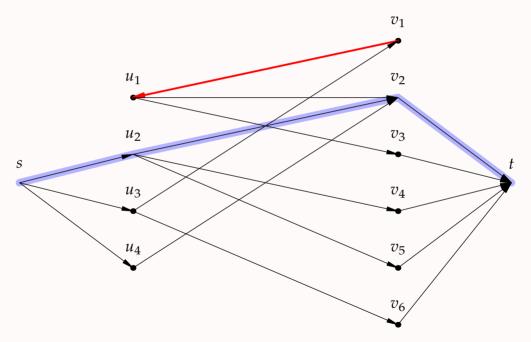
### Graphe résiduel : mise à jour du graphe résiduel

■ On calcule le nouveau couplage obtenu  $M \leftarrow M\Delta C$ .



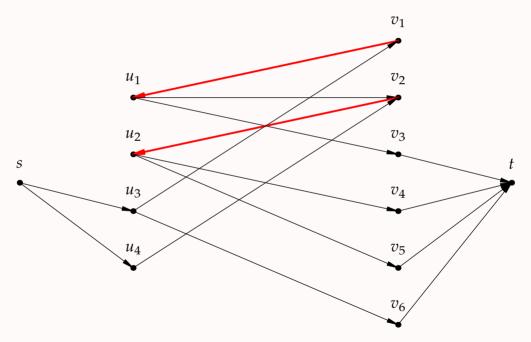
 $M = \{(u_1, v_1)\}$ 

■ Le couplage peut encore être amélioré :



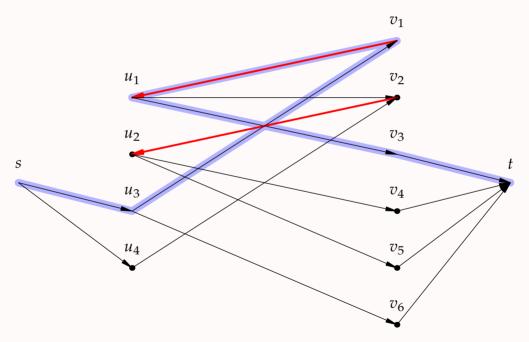
 $M = \{(u_1, v_1)\}$ 

■ On met à jour le couplage  $M \leftarrow M\Delta C$ :



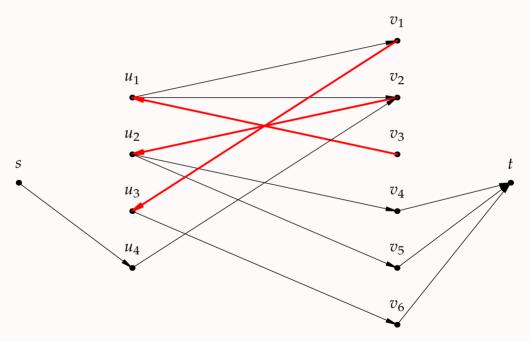
 $M = \{(u_1, v_1), (u_2, v_2)\}$ 

■ Le couplage peut encore être amélioré :



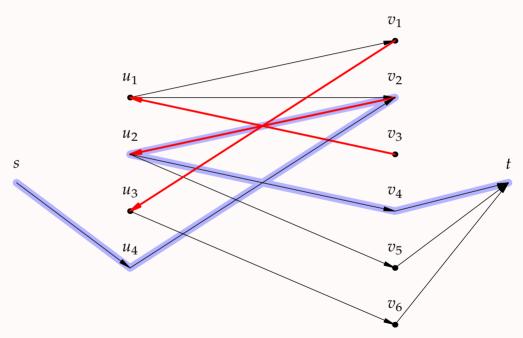
 $M = \{(u_1, v_1), (u_2, v_2)\}$ 

■ On met à jour le couplage  $M \leftarrow M\Delta C$ :



 $M = \{(u_1, v_3), (u_2, v_2), (u_3, v_1)\}$ 

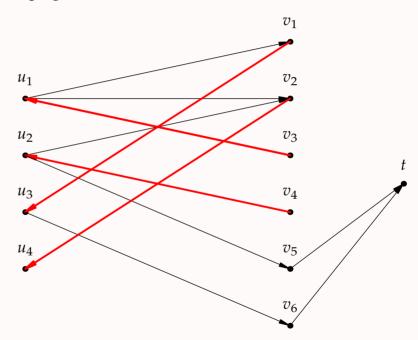
■ Le couplage peut encore être amélioré :



 $M = \{(u_1, v_3), (u_2, v_2), (u_3, v_1)\}$ 

■ On met à jour le couplage  $M \leftarrow M\Delta C$ :

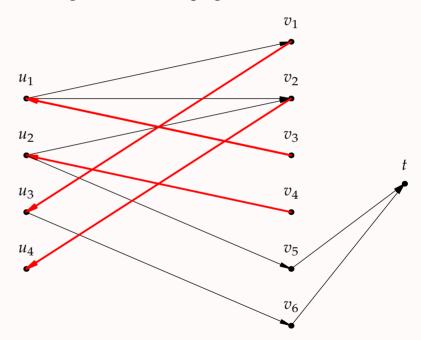
S



 $M = \{(u_1, v_3), (u_2, v_4), (u_3, v_1), (u_4, v_2)\}\$ 

### Graphe résiduel : fin

■ Il n'y a plus de chemin augmentant : le couplage obtenu est maximal!



 $M = \{(u_1, v_3), (u_2, v_4), (u_3, v_1), (u_4, v_2)\}\$ 

S

#### **Conclusions**

- Un couplage s'obtient en partant du couplage vide et en cherchant des chemins augmentants dans le graphe.
- Dans un graphe biparti, le calcul des chemins augmentants peut s'obtenir à l'aide du graphe résiduel
- Chaque chemin augmentant augmente la taille du couplage de 1.
- Complexité pire cas :
  - ▶ Parcours de graphe : O(|U| + |V| + |A|) (linéaire)
  - Nombre d'itérations : |U| dans le pire cas...
  - ► Complexité :  $O(|U| \times (|U| + |V| + |A|))$
  - Si n = |U| + |V| on obtient une complexité cubique  $O(n^3)$  dans le pire cas.